
Mirazon

Latency for Dummies

The bane of our existence

Friday, July 31

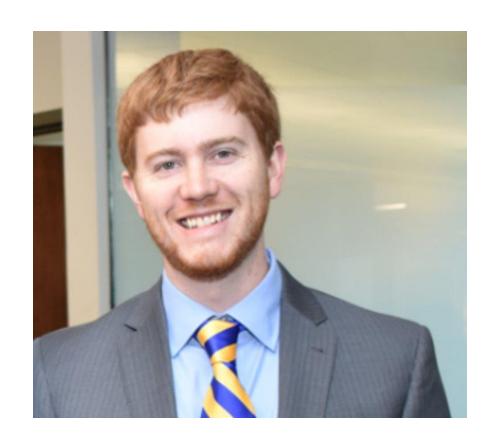
Overview of Mirazon

- Consulting services company
- •Founded in 2000
- •Focus on partnering with companies to facilitate success
- •T&M or "managed" agreements we offer both and don't require retainers

•Offer best-of-breed technology solutions that are rigorously tested and that we are highly certified

and trained

Best Place to Work in Greater Louisville


AND Kentucky five years running

Let Me Introduce Myself

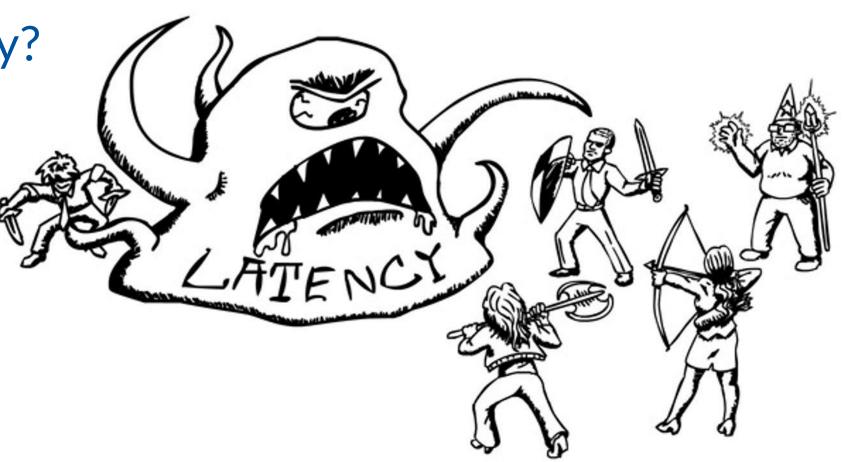
- Worked at Mirazon since 2007
- Currently Chief Technology Officer
- •MCSE 2003, 2016 (different acronyms), MCITP-EA
- •SME for Microsoft for Hyper-V 2008
- •VMware VCP 3.5, 4, 5, 6, 6.5, VCAP DCA: 4, 5, DCD 5
- •BS:CIS Information Security UofL

Disclaimer

I'm not an electrical engineer, physicist, mathematician, or any of the other overeducated people who truly understand the complex and variable-rich math involved with some of the calculations referenced in this presentation.

Some of these numbers took hours of research and reading far more about physics than I cared to, simply to get something as straightforward as "the industry states that a good rule of thumb is .66."

Every number in this presentation has been rounded to an easy-to-discuss number, so don't throw things if you don't agree with a number specifically.



Agenda

What is latency?

Interconnects

- Network
- Server
- Storage
- THE CLOUD!
- Users

Latency

What is it?

Dictionary.com:

"The period of apparent inactivity between the time the stimulus is presented and the moment a response occurs."

Translated:

The length of time between when you poke the bear and when it kills you."

Latency

How is it measured?

1 second =

1,000 milliseconds (ms)

1,000,000 microseconds (µs)

1,000,000,000 nanoseconds (ns)

Latency

The Universal Truths

- The busier, something is, the higher its latency.
- When a connection is saturated, its latency skyrockets.
- The faster a link, the lower the processing latency.

Interconnects

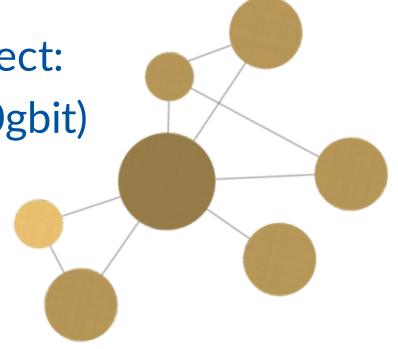
What's faster? CAT6 or Fiber?

2 switches, 10 feet apart?

TECHNICALLY speaking...

Speed of light in a vacuum (c): 186,000 miles/second Speed of light in earth air (.99c): 184,000 miles/second Speed of light in fiber optic cable (.66c): 123,000 miles/second Speed of transfer in twisted pair (.64c): 119,000 miles/second

Round trip latency: 30.8 nanoseconds for fiber, 31.8 for CAT6.


Transceivers add between 2 (rare) and 10 (common) <u>micro</u>seconds of latency Round trip latency: 40,030.8 <u>nano</u>seconds for fiber, 31.8 for CAT6. .04 milliseconds vs .0000318 milliseconds

Interconnects

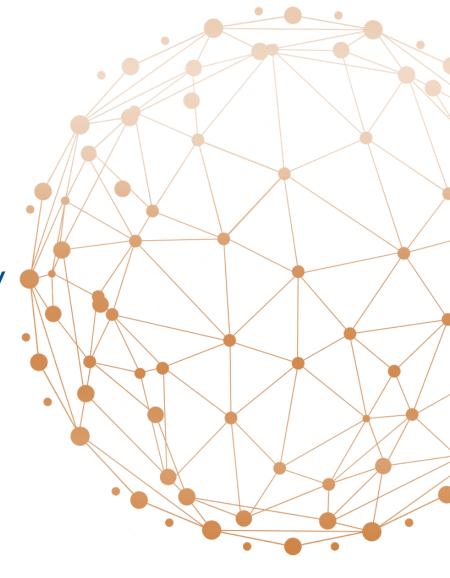
None of that was realistic

• If within distance -- without outside interference -- copper will give better latency, accounting only for physics.

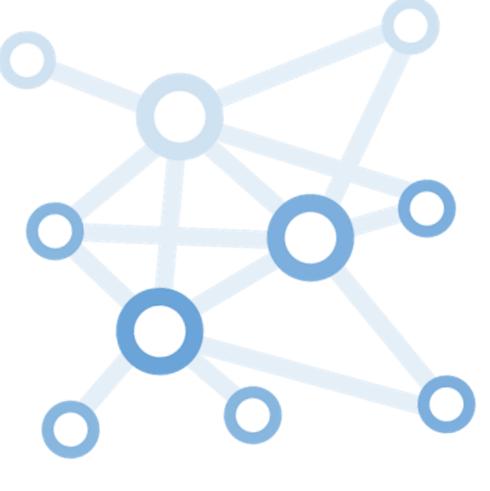
- Many variables go into a simple interconnect:
- Connection speed (100mbit vs 1gbit vs 10gbit)
- Switching time
- NIC processing
- Compute processing

Interconnects

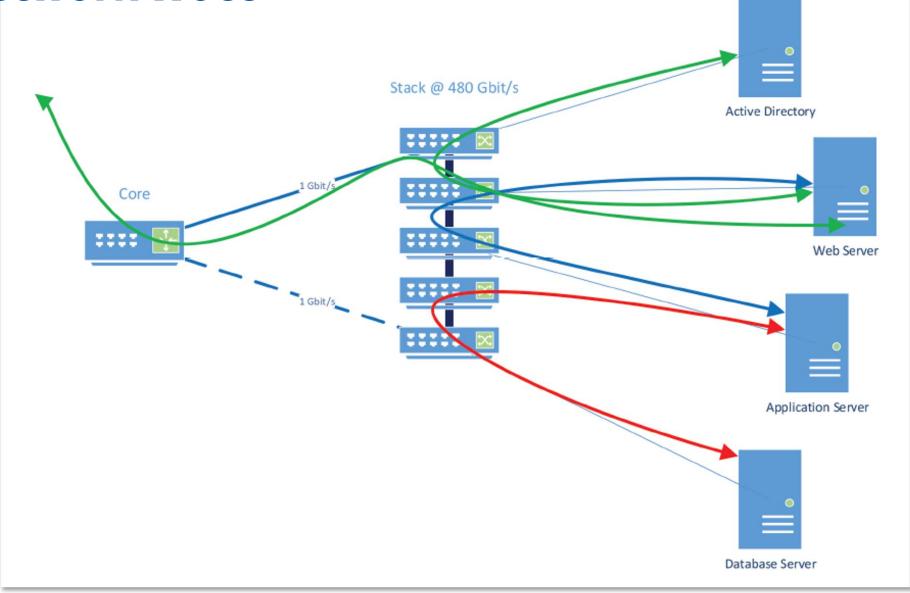
None of that was realistic


What about farther distances?

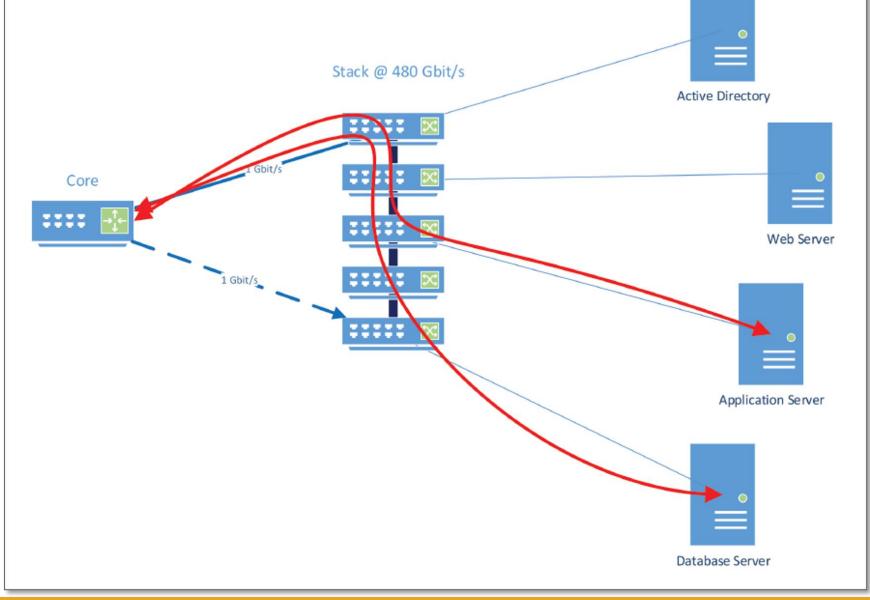
- Copper attenuates repeaters are bad
- Cross talk
- Leased lines have equipment in line
- Cables don't run in straight lines
- Satellites
 - Nearly the speed of light
 - Adds a HUGE distance 12,000-24,000 miles per trip


TCP/IP, Ethernet and Duplex and speed

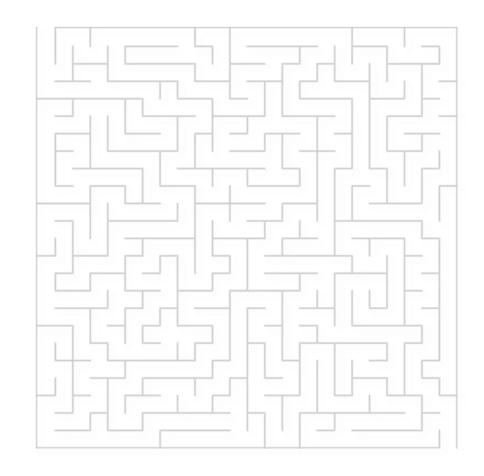
- TCP/IP, Ethernet
 - Encapsulation/decapsulation
 - NIC offload capabilities can help
 - Jumbo Frames CAN help, but not necessarily
 - FCoE less overhead than iSCSI
 - FC less overhead than FCoE
- Duplex and Speed still a concern
 - Especially prevalent on leased lines
- Spanning tree convergence



Routing


- Modern networks heavily subnetted
 - Where is the routing happening?
 - Switches
 - Routers
 - How many hops away?
 - How overcommitted are those uplinks?
 - Full links cause latency
- Minor changes can cause CPU-based routing

Routing



Routing

The Internet

- Uncontrolled chaos
- Thousands of paths
 - none care about you
- Drops all QoS
- Paths can regularly flip
- Dozens of providers in every path
- Makes some on premise things feel slow
- Firewalls can add a lot of latency

Hardware

Motherboard CPU & RAM

- Not all PCI-E links are created equal
 - Generation 1, 2, 3, 4
 - Electrical wiring vs physical slots (x16 slots aren't necessarily)
 - Slot overcommitment Storage controller with 16 SSDs in a single x8 slot
- NUMA QPI half as fast as direct memory
- Properly lay out your DIMMs (RTFM)

Operating Systems

Hypervisor

- CPU overcommitment/CPU ready
- vNUMA
- Memory compression/swapping
- Virtualization drivers
- vSwitch uplink overcommitment
- Localized caching to the host
- Routing between VMs [NSX?]

Operating Systems

Physical OS

- Keep firmware and BIOS up to date
- Keep drivers up to date
- C states?
- Turboboost?
- Hyperthreading?

Generic

- Vendors lie, modify the truth, obfuscate context to their benefit.
- Context is insanely important
- Large focus on storage latency now
- Historically storage
 - Has had highest latency
 - Has had fewest latency advances
 - Has been least designed for performance

Generic

- Watch for:
 - IOPs without block size
 - IOPs without avg/max latency

- Spinning disks
 - 7.2k high latency
 - 10k & 15k much lower, 15k replaced by SSD
 - Short stroking finally almost dead

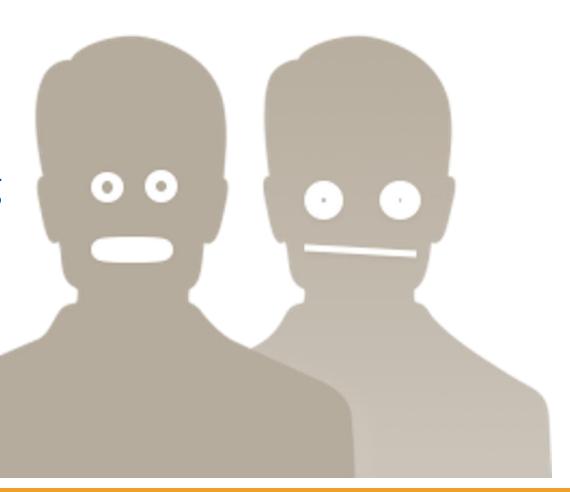
SSD

- Amazing at reading
- Good at writing ... usually
- Write amplification
- Pages and blocks
- Writes wear out SSDs
- Important to have disks and arrays designed for writes with SSDs

RAID

- RAID 1/10
 - Half the write performance always
- RAID 5/50
 - Between N-1 and 25% write performance
 - N-1 Read
- RAID 6/60
 - Between N-2 and 16% write performance
 - N-2 Read
- Rebuilds!

Features


- Dedupe and Compression add latency
- Auto tiering can sometimes compensate for latency
 - Speed of tiering important
 - Process of tiering can slow down performance
- Caching
 - Good way to boost slower storage
 - Is the cache ever lost?
 - Penalty for rebuilding it

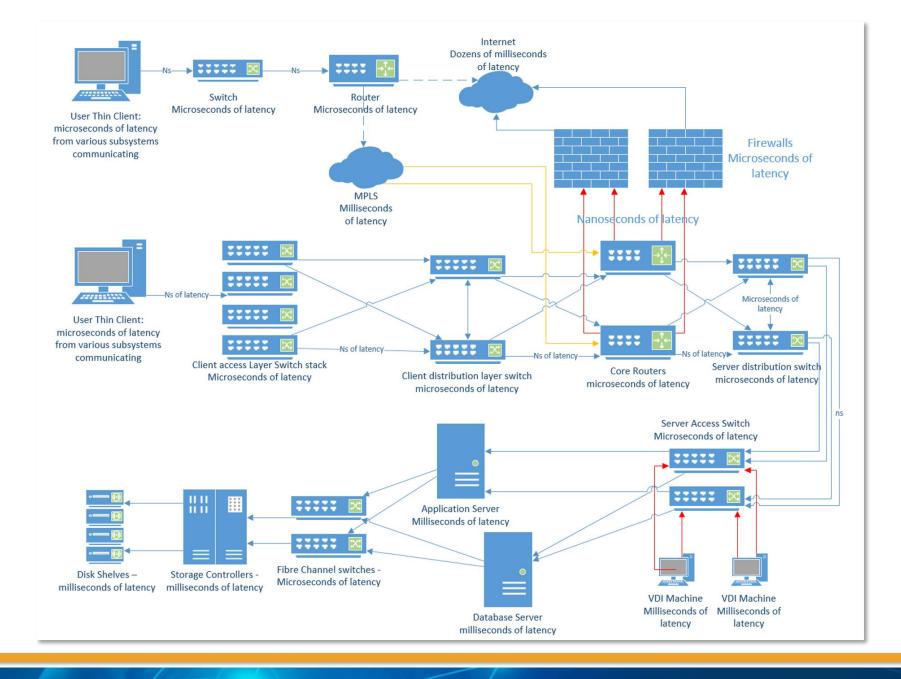
General

- Aggregate of all latency everywhere
- 100ms total latency where it's noticed in direct interaction
- Includes everything from user endpoint through datacenterDifferent concerns for different types of users
- Application type
- Chatty client/server
- Server based

Generically

- Desktop Speed
- Network speed to datacenter
- Datacenter network
- All servers involved in processing
- Storage
- Path back

Bottleneck based on location


- On premise
 - Application processing
 - Storage
 - Fixed by better apps and flash often
- MPLS/VPN
 - Path to datacenter
 - Chatty client/server applications
 - Application processing
 - Storage
 - Fixed by VDI, better apps often

VDI / Remote Sessions

- Helps many remote issues
- Remedies chatty apps
- Can mitigate impact of high latency link
- 100 ms still gold standard for whole user experience
- Pay attention to jitter
- Can build credit towards other latencies

The Cloud

Panacea ... or latency nightmare?

- No benefit for in office or on the road
- Internet latency important
- Firewall latency important
- Geolocation?
- Cloud's latency important (full stack in cloud)
- Hybrid (resources close to each other that talk a lot)
- Oversaturated pipes

Mirazon

Thank You / Questions?

Brent.Earls@mirazon.com

Mirazon.com

